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Abstract. A self-consistent energy-independent non-local model pseudopotential theory has
been developed for ternary alloys of simple metals for the first time. For K–Rb–Cs alloys,
the partial structure factors are obtained by a solution of the standard Percus–Yevick equations
for a ternary mixture of hard spheres. These partial structure factors are applied to calculate
the electrical resistivities in the full concentration range of the alloy using the Ziman theory.
Both the structure factors and the pseudopotential calculated form factors have been shown
to be concentration sensitive. It has been shown that the electrical resistivities of the binary
liquid alloys, such as K–Rb or K–Cs which exhibit nearly ideal structural behaviour, can be
predicted to be in reasonable agreement with the experimental data. For ternary alloys, the
calculated electrical resistivities vary smoothly with the concentration of each constituent, follow
a well defined pattern in continuity and form a so-called ‘electrical resistivity surface’. The
results suggest that both the second-order non-local pseudopotential perturbation theory and
the Ziman formalism are quite applicable in the prediction of the electrical resistivities of the
multi-component alloys.

1. Introduction

The pseudopotential theory constructed from the first principles has been widely used in the
prediction and interpretation of both the atomic and the electronic structures of simple metals
and their binary alloys (for a review see, e.g., Hafner (1987) and Young (1992)). However,
such investigations for multi-component simple metallic alloys are still relatively unexplored.
In the early 1980s, a self-consistent energy-independent non-local model pseudopotential
(EINMP) (Wang, Lai and So 1980, hereafter referred to as I, Wang and Lai 1980, hereafter
referred to as II) was derived for use in the calculation of the electronic structure of the
binary alloys of simple metals. The derived non-local pseudopotential contains a marked
concentration dependence and has been successfully applied to the calculation of electronic
transport coefficients of some alkali binary alloys and some Li-based polyvalent binary
alloys. This has prompted us to consider further application of the derived pseudopotential
to alloys containing three different simple metallic constituents.

The details of the calculation of the pair potentials that are parallel to the formula for
binary alloys in EINMP theory are given in this paper for the first time. The K–Rb–Cs
alloy systems have been chosen to be investigated as examples because they exhibit simple
structural properties. For binary liquid alloys such as K–Rb, K–Cs and Rb–Cs, nearly ideal
behaviour has been expected from both the experimental and the theoretical points of view
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(see Alblaset al (1981) and references therein). The electrical resistivities of some of those
liquid binaries such as K–Rb and Na–Cs have also been well studied within the accuracy
of the Ziman formalism by taking into account the non-local nature of the pseudopotentials
(see e.g., Devlinet al (1973) and I). It has been shown that the Ziman-type theory can
be applied successfully in the prediction of the electrical transport properties for simple
binary alloy systems. However, a close examination of its applicability to multi-component
systems is still needed.

It is well known that, for a random binary system, the three partial structure factors
can only be derived uniquely from three diffraction experiments independently. For ternary
alloys, generally speaking, six diffraction experiments are required, which can hardly be
performed in laboratory. This forced us to rely upon results obtained from the solution of
the well known Percus–Yevick equation for a model liquid consisting of hard spheres.

The rest of the article is organized as follows. In section 2 the EINMP has been
extended to ternary alloy systems and the interatomic pair potentials for K–Rb–Cs alloys
calculated; then the effective hard-sphere diameters and hence the partial structure factors
have been determined. In section 3, these structure factors are used to calculate the electrical
resistivities for pure K, Rb and Cs metals, binary K–Rb, Cs–Rb and K–Cs alloys and ternary
K–Rb–Cs alloys. The influence of the form factors and structure factors on the electrical
resistivities has been studied in comparison with the data experimentally available. The
reliability of the second-order pseudopotential perturbation calculations, the hard-sphere
partial structure factors and the applicability of the Ziman theory for ternary liquid alloys
used have been checked. Conclusions are finally drawn in section 4.

2. Pair potentials and structure factors for ternary A–B–C alloys

2.1. Calculation of interatomic pair potentials

The numerical calculation of interatomic pair potentialsVij (R) for ternary A–B–C alloys
can be performed in a similar manner to that for pure metals and their binary alloys (I and
II). The pair potentialVij (R), i.e.VAA(R) between two A-type atoms,VBB(R) between two
B-type atoms,VCC(R) between two C-type atoms,VAB(R) between A- and B-type atoms
andVAC(R) between A- and C-type atoms, andVBC(R) between B- and C-type atoms, can
be written as

Vij (R)
∗ = Zeff,iZeff,jR−1

(
1− π−1

∫ ∞
0

dq[Fi,j (q)+ Fj,i(q)]q−1 sin(Rq)

)
(1)

whereR = |Rµ(j) −Rλ(i)|, Rλ(i) is the ionic position vector forλth i-type (i = A,B,C or
1, 2, 3) atom in the system considered.Zeff,i is the effective valence and

Zeff,iZeff,j = ZiZj − ρi,dρj,d (2)

with Zi andρi,d being the actual valence and depletion charge, respectively, of thei-type
ion. Fi,j (q) denotes the normalized energy wavenumber characteristic and takes the form

Fi,j (q) = −[�0q
2/(2πZeff,iZeff,j )](Gi,j (q)+1Gi,j (q)+Hi,j (q)+1Hi,j (q)) (3)

in which�0 is the mean atomic volume.Gi,j (q), 1Gi,j (q), Hi,j (q) and1Hi,j (q) have the
same form as defined by equations (2.12), (2.13), (2.17) and (2.18) in II for binary alloys.
It is worth noting that, for ternary alloys, equation (3) contains a concentration dependence
through quantities such asE0

k (the unperturbed eigenenergy) andNk (renormalization
constant of the pseudo-wavefunction) as appearing inρi,d and the screened potential involved
in the form factors. Hence, with the presence of a third component, a self-consistent
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calculation must be performed as for pure and binary alloys. In EINMP theory, the form
factorwECi,q (k) can be written as

wECi,q (k) = wi,q(k)+1wi(q) (4)

wherewi,q(k) is the form factor in which the electron–electron interaction is treated within
the Hartree-type approximation and1wi(q) denotes a correction due to the exchange and
correlation effects of the valence electrons towi,q(k) (see equation (2.9) of II for details).
E0
k can be converted into

E0
k =

k2

2
+

3∑
i=1

ciN〈k|w0
i (r)|k〉 =

3∑
i=1

ciE
0
i,k (5)

wherew0
i (k) is the bare ionic pseudopotential given by equation (2.2) of Wooet al (1975)

with N = ∑
i Ni whereNi and ci are the number and the concentration, respectively, of

the i-type ions or atoms in the alloy under consideration. The depletion charge is of the
form

ρi,d = �0

π

∫ kF

0
dkm∗(k)αi(k)(k|Nk|)2 (6)

wherem∗(k) is the first-order density-of-states effective mass for a valence electron in the
alloy and takes the form

m∗(k) = m∗1(k)m
∗
2(k)m

∗
3(k)

c1m
∗
2(k)m

∗
3(k)+ c2m

∗
1(k)m

∗
2(k)+ c3m

∗
1(k)m

∗
2(k)

(7)

with m∗i (k) being the first-order density-of-states effective mass for a valence electron in
the pure metal consisting of thei-type ions (see equation (2.28) in I where the details of
αi(k) was also given). The normalization constantNk is calculated to be

|Nk|2 = c1m
∗
2m
∗
3 + c2m

∗
1m
∗
3 + c3m

∗
1m
∗
2

c1m
∗
2m
∗
3|N1,k|−2+ c2m

∗
1m
∗
3|N2,k|−2+ c3m

∗
1m
∗
2|N3,k|−2

(8)

for ternary alloys, with|N1,k|−2 having the same meaning as equation (2.29) in I. The Fermi
wavevector may be determined, as usual, from the equation

k3
F = 3π2�−1

0

3∑
i=1

ciZi. (9)

The formula for ternary alloys, such as (5), (7) and (8) derived here, can be converted
to those forms for binaries ifc3 is set to zero. So they can be regarded as the unified form
for A–B–C alloys in the full concentration range (including pure metal and binary alloy
cases). In order to obtain the pair potentials of a ternary alloy according to equation (1) we
have used firstly the EINMP as the bare pseudopotential for the ions in alloys and secondly
the Ichimaru–Utsumi (1981) type of exchange–correlation factor in the calculation of the
screened pseudopotentials.

For K–Rb–Cs ternary alloys, since no reliable experimental values of the atomic volumes
�0 are available to us, it has been assumed that�0 changes linearly with the concentrations
of K, Rb and Cs, i.e.

�0 = cK�K + cRb�Rb + cCs�Cs (10)

where�K , �Rb and�Cs denote the atomic volumes of pure K, Rb and Cs, respectively,
metals at the given temperature, andcK+cRb+cCs = 1. Such calculated�0 should contain
no serious error in the fact that the maximum volume contractions are 1.0% for K–Cs and
5.7% for Na–Cs liquids (Alblaset al 1981).
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The calculation of the pair potentials as described above has been performed for the
ternary liquid K–Rb–Cs system at 100◦C and a number of different concentrations. The
calculated pair potentials for K0.6Rb0.2Cs0.2, K0.4Rb0.2Cs0.4 and K0.4Rb0.4Cs0.2 alloys are
displayed in figure 1 as examples in comparing with those of pure K, Rb and Cs metals.
The changes in the pair potentials due to alloying effects which merit emphasis have been
summarized as follows.

(i) The first minimum of the pair potential of K–K shifts downwards with increasing
Rb or Cs concentration, while that of Cs–Cs shifts upwards with increasing K or Rb
concentration. Such a change is due mainly to the variation in the screening function
with the mean electron density on alloying (see, e.g., Hafner (1987) and Young (1992)), i.e.
the electron density of the K ion in alloys is smaller than that in pure K metal, while the
electron density of Cs is larger than that in pure Cs metal.

(ii) The pair potentials for unlike pairs such asVKRb(R) andVKCs(R) andVRbCs(R)
do not differ very much from the mean values of1

2(VKK(R) + VRbRb(R)), 1
2(VKK(R) +

VCsCs(R)) and 1
2(VRbRb(R) + VCsCs(R)), respectively. This suggests that there is no

significant non-additivity presented in the pair potentials. Hence, there should be no
significant compound-forming or phase separation tendency for the system considered.

(iii) The above analyses disregard any variation in the pseudopotential of each
component on alloying (see, e.g., Hafner (1987)). For some of the alkali-polyvalent alloys
such as Li4Pb, this effect may play a dominant role in the accurate calculation of the
interatomic pair potentials. For the K–Rb–Cs alloys considered, which lack strong ordering
tendencies, this effect is negligible.

(iv) Another effect which should be considered is that, for heavier alkali metals such
as Rb and Cs, the d state has been presented and hence s–d mixing may occur in both
the pure metals and their binary and ternary alloys. According to the argument of Liet
al (1986, 1987), the s–d mixing effect can be simulated by slightly changing the effective
core radius from the EINMP valueRl (l = 0, 1, 2), i.e. by replacing the parameterRl in the
EINMP by RMl = Rl(1+ δ), whereδ is a small negative value. It has been found that the
EINMP calculated form factors and the interatomic pair potentials are sensitive toδ. Such
a modification can improve not only the thermodynamic and the structure results (Liet al
1986), but also the electrical resistivities calculated for alloys. This aspect will be further
analysed in section 3.2.

In order to gain some further insight into the alloy properties on alloying, it is useful
to have a close examination of the changes in the pseudopotential calculated on-Fermi-
level form factorswECi,q (k) and the depletion chargesρi,d for ions in alloys with different
concentrations. The results have been shown in figure 2 and figure 3 for some K–Rb–Cs
alloy cases. It is found that the concentration dependence of bothwECi,q (kF ) and ρi,d can
be taken into account effectively in the self-consistent EINMP theory. We shall evaluate
this concentration-dependent nature later. As for the depletion charge, the absolute value
of ρi,d for the electronegative ion (K in K–Rb and K–Cs or Rb in Rb–Cs) decreases with
increasing non-electronegative ion concentration, while the absolute value of that for the
non-electronegative ion (Rb in K–Rb or Cs in K–Cs and Rb–Cs) increases with increasing
electronegative ion concentration. Figure 2 shows that for the ternary alloys the largest
difference in the depletion charges occurs between the K and the Cs ions. This implies
a charge-transfer mechanism which accounts for the electrical resistivity maximum in the
alloys as discussed in II for alloys such as Na–Cs and Na–K, i.e. the partial localization
of the valence electrons on the K ion (which always behaves as an electronegative ion)
becomes larger in going from K–Rb to K–Cs alloy.
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Figure 1. The EINMP calculated interatomic pair potentials for (a) K0.6Rb0.2Cs0.2,
(b) K0.4Rb0.2Cs0.4 and (c) K0.4Rb0.4Cs0.2 ternary alloys at 100◦C. From left to right; the thick
curves represent the K–K, Rb–Rb and Cs–Cs interactions, the thin curves represent the K–Rb,
K–Cs and Rb–Cs interactions, and the broken curves represent the interactions in pure K, Rb
and Cs metals at 100◦C.

2.2. The hard-sphere partial structure factors

The expressions for the hard-sphere partial structure factors beyond the binary mixture in
the Percus–Yevick approximation have been derived in the literature (Hoshino 1983) and
are written in terms of the component concentrationci , the hard-sphere diameterσi , and
the partial packing densityηi . ηi takes the form

ηi = πciσ 3
i /6�0 (11)
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Figure 2. The depletion charges calculated from the EINMP theory for the ions in the ternary
K0.8−xRbxCs0.2, K0.8−xRb0.2Csx and K0.2Rb0.8−xCsx liquid alloys.

Figure 3. The EINMP calculated form factors for (a) K0.6Rb0.2Cs0.2, (b) K0.4Rb0.2Cs0.4 and
(c) K0.4Rb0.4Cs0.2 ternary alloys in comparison with those of pure K, Rb and Cs metals at
100◦C.

for a given ternary alloy. Onceσ1, σ2 and σ3 have been determined, the corresponding
partial packing density and structure factors can be calculated. The values ofσi can be
determined as in II for binary alloys using a relation which was first suggested by Ashcroft
and Langreth (1967b) and has been confirmed later by Hafner (1977) and Perry and Silbert
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(1978), i.e.

Vii(σi) = V minii + 3
2kBT (12)

whereV minii is the depth of the first minimum in the pair potential andkB the Boltzmann
constant. The thus determinedσi-values are summarized in table 1, together with the mean
atomic volumes, the total packing densitiesη =∑i ηi for alloys at selected concentrations.
It is worth noting that, for binary K–Rb, K–Cs and Rb–Cs liquid alloys, the concentration-
dependent hard-sphere diameters for both the heavier ion and the lighter ion will be increased
with increasing concentration of the lighter ion, all exhibiting a nearly linear behaviour. The
resulting total packing density changes smoothly but deviates slightly from a linear relation
with the alloy concentration. This is not a serious problem since we have assumed a linear
concentration dependence of the mean atomic volumes in calculating the pair potentials and
ηi . Finally, it should be noted that, since we have used a different exchange–correlation
function in the pseudopotential calculation as in I or II, theσi-value may be a little different
from those determined in I and II for pure metals and binary alloys.

Table 1. Values of atomic volume�0 and the hard-sphere parametersσi andη for K–Rb–Cs
alloys at various different concentrationsci at 100◦C.

cK cRb cCs �0 (au) σK (au) σRb (au) σCs (au) η

K–Rb 1.0 535.0 7.589 0.428
0.8 0.2 558.0 7.583 8.096 0.427
0.6 0.4 581.0 7.571 8.090 0.426
0.4 0.6 604.0 7.560 8.080 0.424
0.2 0.8 627.0 7.554 8.069 0.423

1.0 650.0 8.058 0.422

K–Cs 0.8 0.2 593.0 7.560 8.684 0.421
0.6 0.4 651.0 7.531 8.664 0.415
0.4 0.6 709.0 7.502 8.640 0.410
0.2 0.8 767.0 7.471 8.614 0.406

1.0 825.0 8.580 0.401

Rb–Cs 0.8 0.2 685.0 8.036 8.659 0.417
0.6 0.4 720.0 8.014 8.639 0.412
0.4 0.6 755.0 7.993 8.619 0.408
0.2 0.8 790.0 7.977 8.600 0.404

K–Rb–Cs 0.6 0.2 0.2 616.0 7.554 8.069 8.684 0.420
0.4 0.2 0.4 674.0 7.525 8.042 8.659 0.415
0.4 0.4 0.2 639.0 7.542 8.063 8.674 0.419
0.2 0.2 0.6 732.0 7.490 8.003 8.629 0.409
0.2 0.4 0.4 697.0 7.513 8.025 8.649 0.413
0.2 0.6 0.2 662.0 7.531 8.047 8.669 0.418

Having fixedσi andηi , the structure factors can be calculated. The results have been
displayed in figure 4 for pure K, Rb and Cs metals and in figure 5 for K0.6Rb0.2Cs0.2,
K0.4Rb0.2Cs0.4 and K0.4Rb0.4Cs0.2 ternary alloys at 100◦C. The results obtained for pure K,
Rb and Cs are in good agreement with the experimental data (Waseda 1980) in the low-q

(q 6 2kF ) region as shown in the inset of figure 4. The concentration-dependent changes for
eachaij (q) in ternary alloys are also clearly demonstrated. The reliability of the structure
factors for binary and ternary alloys will be seen from their applications in the electrical
resistivity calculations in the following sections.
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Figure 4. Hard-sphere structure factors for pure K, Rb and Cs metals at 100◦C. Comparisons
with the experimental data (Waseda 1980) in the low-q regions (q 6 2kF ) are displayed in the
inset.

3. Electrical resistivities of K–Rb–Cs alloys

In this section, we apply the partial structure factors, as obtained in the preceding section, to
calculate the electrical resistivities for K–Rb–Cs alloys at various different concentrations.
The main purpose of this application is threefold:

(i) to examine the applicability of the partial structure factors as determined in section 2;
(ii) to study the concentration dependence of the electrical resistivities;
(iii) to check the reliability of the low-order pseudopotential perturbation theory and the

Ziman theory for multi-component simple metallic alloys.

3.1. Expressions for the electrical resistivities of ternary alloys

According to I, II and Wang and So (1977), the electrical resistivity for alloy can be
expressed as

ρ = [〈m∗(kF )〉|NkF |2]2ρf (13)
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Figure 5. Partial structure factors calculated for (a) K0.6Rb0.2Cs0.2, (b) K0.4Rb0.2Cs0.4 and
(c) K0.4Rb0.4Cs0.2 ternary alloys at 100◦C. The upper three thick curves are as follows: ——,
aKK(q); – – –,aRbRb(q); — · —, aCsCs(q). The lower three thin curves are as follows: ——,
aKRb(q); – – – aKCs(q); — · — aRbCs(q).

whereρf is the electrical resistivity in the Ziman-type theory which is of the form (in atomic
units system)

ρf = (3π�0/4k
6
f )

∫ 2kF

0
dq q3

( 3∑
i=1

ciaii(q)|wECi,q (kF )|2+ 2(c1c2)
1/2a12(q)w

EC
1,q (kF )w

EC
2,q (kF )

+2(c1c3)
1/2a13(q)w

EC
1,q (kF )w

EC
3,q (kF )+ 2(c2c3)

1/2a23(q)w
EC
2,q (kF )w

EC
3,q (kF )

)
(14)

for ternary alloys. Hereinaij (q) is the Ashcroft–Langreth partial structure factors as
determined in section 2,〈m∗(kF )〉 andkF are the density-of-states effective massm∗(kF )
averaged over the Fermi surface and the Fermi wavevector, respectively;wECi,q (kF ) is the
on-Fermi-level form factorwECi,q (k) calculated in a self-consistent manner with exchange–
correlation effects included for thei-type ion in a ternary alloy A–B–C. In using the
approximation as argued in II, if〈m∗(kF )〉 is approximated by the first-order density-of-
states effective mass, then equation (13) becomes

ρ = [m∗F (kF )|NkF |2]2ρf (15)
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wherem∗F (kF ) and |NkF |2 can be calculated using equations (7) and (8) withk substituted
by kF . Equation (15) has been used in this work to calculate the electrical resistivities of
K–Rb–Cs alloys at various different concentrations.

3.2. Electrical resistivities of pure alkali metals and their binary alloys

In order to check the accuracy of the theory and the hard-sphere structure factors used here,
it is necessary to perform a comparison of the calculated and measured electrical resistivities
for pure metals and their binary alloys. The theoretical results have been summarized in
table 2. For pure metals K, Rb and Cs, the calculated electrical resistivities are 14.71µ� cm,
24.76µ� cm and 39.31µ� cm, respectively, at the corresponding melting points, compare
favourably with the experimentally measured 13.1 µ� cm, 22.0 µ� cm and 36.0 µ� cm.
It has been found that, for the non-local pseudopotential calculated on-Fermi-level form
factors, a kink atq ≈ 2kF appears for Rb and Cs which leads to a larger departure from
the zero value in comparison with that of K (cf figure 2). Sincea(q) increases abruptly as
q approaches 2kF , the enhanced departure from the zero value of the form factor should
contribute positively to the electrical resistivity for Rb or Cs. This also indicates that
accurate form factors for ions in the alloys that exhibit a marked concentration dependence
should be of extremely importance in yielding reasonable electrical resistivities.

Table 2. Theoretical values of|NkF |−2, the valence-electron density-of-states effective mass
m∗F (kF ) and the electrical resistivitiesρ calculated for liquid K–Rb–Cs alloys at various different
concentrationsci at 100◦C.

cK cRb cCs |NkF |−2 m∗F (kF ) ρ(µ� cm)

K–Rb 1.0 0.9874 1.0301 17.09
0.8 0.2 0.9866 1.0258 20.15
0.6 0.4 0.9859 1.0213 22.85
0.4 0.6 0.9851 1.0166 25.03
0.2 0.8 0.9844 1.0118 26.64

1.0 0.9837 1.0070 27.67

K–Cs 0.8 0.2 0.9866 1.0233 29.78
0.6 0.4 0.9858 1.0154 39.88
0.4 0.6 0.9850 1.0069 46.69
0.2 0.8 0.9842 0.9982 49.77

1.0 0.9834 0.9897 48.95

Rb–Cs 0.8 0.2 0.9836 1.0037 34.34
0.6 0.4 0.9836 1.0003 39.88
0.4 0.6 0.9835 0.9968 44.27
0.2 0.8 0.9835 0.9932 47.33

K–Rb–Cs 0.6 0.2 0.2 0.9858 1.0185 31.80
0.4 0.2 0.4 0.9850 1.0103 40.48
0.4 0.4 0.2 0.9851 1.0136 33.23
0.2 0.2 0.6 0.9842 1.0018 45.84
0.2 0.4 0.4 0.9843 1.0053 40.55
0.2 0.6 0.2 0.9843 1.0087 34.14

For binary alloys, K–Rb and K–Cs have been chosen as examples and the calculated
results have been shown in figure 6 together with the experimental curves which were
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taken from the results of Hennephofet al (1972, 1978). The results for K–Rb alloy
are quite good. The K–Cs results, however, appear to be not quite as satisfactory. The
discrepancy arises probably because we have used equation (15) instead of equation (13) to
carry out the electrical resistivity calculations. The difference between the density-of-states
effective mass〈m∗(kF )〉 and the first-order density-of-states effective massm∗(kF ) has been
neglected. It has been argued in II thatm∗(kF ) does not contain a positive contribution
from the partial localization of the valence electron on the electronegative ions; hence,
equation (15) will lead to a underestimation ofρ calculated for an alloy such as K–Cs.
On the other hand, the partial localization of the valence electron due to the s–d mixing
effects with the presence of the heavier ion Cs may also lead to an increase in the electrical
resistivities of the alloy system. Since it is rather difficult to calculate the higher-order
contributions involved in〈m∗(kF )〉, we shall evaluate the above-mentioned two kinds of
valence-electron-localization mechanism in a similar manner by modifying the core radius
of the EINMP according to the suggestions given by point (iv) in section 2.1. This can
be done by assuming that, for each componenti, the δi-value will be in a linear relation
to the concentration and increase asci is decreased. The largest|δ| is 0.018 for the K ion
and 0.03 for Cs. The final result thus calculated for K–Cs is also illustrated in figure 6 and
proves to be an excellent improvement. It is worth noting that, under such modifications,
bothσi andwECi,q (k) will be changed systematically and both contribute positively (similarly
in magnitude) to the finalρ-value. Since the goal of this paper is not how to obtain good
numerical results, the details of the related calculations will be published in a separate
paper and the following results for K–Rb–Cs alloys (see also table 2) do not contain such
modifications.

Figure 6. Electrical resistivities of liquid K–Rb and K–Cs alloys at 100◦C. ——, experimental
results (Hennephofet al 1972, 1978); - - - -, EINMP results; – – –, modified EINMP results.

Besides the points mentioned above, the structural properties of K–Cs have been
considered. It has already been mentioned that this alloy system exhibits nearly ideal mixing
behaviour (we believe that the same will be true for K–Rb and Rb-Cs alloys). This can be
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studied by looking at the Bathia–Thornton (1970) partial structure factors and specifically
the long-wavelength limit of the concentration–concentration partial structure factorScc(0).
As figure 7 shows, the resultingScc(0) of the hard-sphere model coincides with the values
of c(1 − c) predicted according to the ideal-solution model, which does not differ very
much from the experimental results (Devlinet al 1973). Hence, we may conclude that the
electrical resistivity maximum does not necessarily have a close relationship to the possible
existence of the chemical ordering or phase separation tendencies in the liquid structures,
at least for the K–Cs alloy considered at 100◦C.

Figure 7. The values ofScc(0) for liquid K–Cs alloys at 100◦C as a function of the potassium
concentration: – – –, ideal solution,Scc(0) = c(1− c); ◦ , hard-sphere model;+, experimental
x-ray results (Alblaset al 1981).

3.3. Electrical resistivities of ternary alloys

The calculation of the electrical resistivities as described above is applied to the K–Rb–Cs
alloys at 100◦C. The results thus calculated are summarized in table 2 for some alloys at
selected concentrations. The electrical resistivity of the alloys, generally speaking, increases
substantially from K-rich alloys to Rb-rich alloys and to Cs-rich alloys. However, such an
increase is by no means linear if weighted by concentration in using the values of pure
metals. The features worth noting are as follows.

(i) There is a pronounced maximum in the binary K–Cs alloys which is located at the
higher atomic concentrations of the heavier element, i.e. at about 60–70 at% Cs. Such a
maximum also appears for ternary K–Rb–Cs alloys if the concentration of Rb is set to, for
example, 20 at%.

(ii) There is no maximum for K–Rb and Rb–Cs binary alloys, but the calculated results
indicate that the departure from the mean electrical resistivityc1ρ1 + (1− c1)ρ can be as
large as 8% of the mean value. In fact, this has already led to a flat top in theρ-values for
Rb–Cs alloy.
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(iii) The electrical resistivities calculated for ternary K–Rb–Cs alloys (including binaries
and pure K, Rb and Cs metals) change smoothly with the concentration of each component
and, thus, form a well defined ‘electrical resistivity surface’ at 100◦C. This can be seen
even more clearly when they are drawn in the three-dimensional space using the equilateral
composition triangle, as shown in figure 8.

Points (i) and (ii) can be understood by recalling that the localization of the valence
electrons on the electronegative component in the K–Cs alloy is larger than that in K–Rb
and Rb–Cs alloys, as argued in I, II and section 3.2 of this paper. Such a charge-transfer
mechanism, which is concentration dependent, can contribute both to the pseudopotential
calculated on-Fermi-level form factors (cf figure 3) and to the pair potential-determinedσi
and therefore the partial structure factorsaij (q) (cf figure 4), to yield systematic changes in
ρ as noted above. Since changes inm∗F (kF ) and |NkF |2-values due to alloying (cf table 2)
are not large enough to cause a significant change inρ at certain concentrations as noted
in the above points (i) and (ii), they contribute only an overall correction to the calculated
electrical resistivities when including full non-locality in the pseudopotential calculation.
Point (iii) is direct verification of the validity of the self-consistent non-local pseudopotential
calculation for ternary alloy used here; it also confirms that theσi-values and the calculated
partial structure factors of the hard-sphere model within the Percus–Yevick approximation
are reasonable to apply to calculate the electrical resistivities for ternary liquid alloys within
the Ziman formalism.

Figure 8. Theoretical ‘electrical resistivity surface’ of the K–Rb–Cs alloys at 100◦C.

4. Conclusion

In this paper, for the first time, the EINMP theory that was formerly developed for binary
alloys of simple metals has been generalized self-consistently to ternary alloy systems to
calculate the interatomic pair potentials. From the calculated pair potentials for the alkali
K–Rb–Cs alloys, the hard-sphere diameters of each component can be determined and the
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partial structure factors are obtained by a solution of the Percus–Yevick equations for a
ternary mixture of hard spheres. These partial structure factors and the form factors as
employed in the computation of the pair potentials were used to calculate the electrical
resistivities for K–Rb–Cs alloys at 100◦C within the Ziman formalism.

From the calculated results we concluded the following.

(i) The calculated electrical resistivities of pure metals and binary alloys are in good
agreement with the experimental data, within the accuracy of the Ziman formalism.

(ii) The partial localization of the electrons on the electronegative component in the
alloy can be used in the interpretation of the electrical resistivity maximum presented in
K–Rb–Cs liquid alloys which exhibit a nearly ideal structural behaviour.

(iii) For ternary alloys in the full concentration range, the calculated electrical resistivities
vary smoothly with the changing composition of each alloy component, follow a well defined
pattern in continuity and form a so-called ‘electrical resistivity surface’.

(iv) Both the second-order non-local pseudopotential perturbation theory and the Ziman
formalism have proved to be quite applicable in the prediction of the electrical resistivities
of the multi-components alloys.
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